Q) SQUAREHEAD

THE TWO MEMORY MODELS

ANDERS SCHAU KNATTEN
C++ UNDER THE SEA 2025
Squarehead / CppQuiz.org

Q) SQUAREHEAD

TECHNOLOGY

Q) SQUAREHEAD

CPPQUIZ.ORG

You've answered 0 of 178 questions correctly. (Clear),

Question #197 Difficulty: @®®

According to the C++23 standard, what is the output of this program?

#include <iostream>
int j = 1;

int main() {
int& i = j, j;
j = 2;
std::cout << 1 << j;

}

Answer: | The program is guaranteed to output: v Answer

Problems? View a hint or try another question.

I give up,_ show me the answer (make 3 more attempts first).

Mode : Training

You are currently in
training mode,
answering random
questions. Why not
Start a new quiz?
Then you can boast
about your score,
and invite your
friends.

Contribute
Create your own!
Android app
Get Sergey

Vasilchenko's
CppQuiz Android

app.

The
Pr ema‘[i(:

Q) SQUAREHEAD ogrammers

OOOOOOOOOO

C++ Brain Teasers

Exercise Your Mind

-
.....

Anders Schau Knatten

Foreword by Olve Maudal
Edited by Sandra Williams

Q) SQUAREHEAD

THE TWO MEMORY MODELS

Q) SQUAREHEAD

THE TWO MEMORY MODELS
e \Why?

Q) SQUAREHEAD

THE TWO MEMORY MODELS

e \Why?
e Theoretical background

Q) SQUAREHEAD

THE TWO MEMORY MODELS

e \Why?
e Theoretical background
e Intuition, framework for reasoning

Q) SQUAREHEAD

THE TWO MEMORY MODELS

e \Why?

e Theoretical background

e Intuition, framework for reasoning
e How stuff works!

Q) SQUAREHEAD

THE TWO MEMORY MODELS

Q) SQUAREHEAD

THE TWO MEMORY MODELS
e High Level language (C++, C, Rust)

Q) SQUAREHEAD

THE TWO MEMORY MODELS

e High Level language (C++, C, Rust)
e CPU / Architecture

Q) SQUAREHEAD

C++ MEMORY MODEL

Q) SQUAREHEAD

C++ MEMORY MODEL

Q) SQUAREHEAD

C++ MEMORY MODEL

e What's meant by "a memory location"

Q) SQUAREHEAD

C++ MEMORY MODEL

e What's meant by "a memory location"
e Two or more threads can access separate memory locations
without interfering with each other.

Q) SQUAREHEAD

C++ MEMORY MODEL

e But other rules too:

Q) SQUAREHEAD

C++ MEMORY MODEL

e But other rules too:
= Sequential execution [intro.execution]

Q) SQUAREHEAD

C++ MEMORY MODEL

e But other rules too:
= Sequential execution [intro.execution]
= Multi-threaded executions and data races [intro.multithread]

Q) SQUAREHEAD

C++ MEMORY MODEL

e But other rules too:
= Sequential execution [intro.execution]

= Multi-threaded executions and data races [intro.multithread]
= Atomic operations library [atomics]

Q) SQUAREHEAD

C++ MEMORY MODEL

e But other rules too:
= Sequential execution [intro.execution]

= Multi-threaded executions and data races [intro.multithread]
= Atomic operations library [atomics]

= Thread support library [thread]

Q) SQUAREHEAD

CPU MEMORY MODEL

Q) SQUAREHEAD

CPU MEMORY MODEL
e X86, ARM, RISC-V, ...

Q) SQUAREHEAD

CPU MEMORY MODEL

e X86, ARM, RISC-V, ...
e Described in the architecture manual

Q) SQUAREHEAD

CPU MEMORY MODEL

e X86, ARM, RISC-V, ...

e Described in the architecture manual

e "A memory consistency model is a set of rules specitying the
values that can be returned by loads of memory." - RISC-V ISA
manual

Q) SQUAREHEAD

CPU MEMORY MODEL

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread
s A load from an address can't observe a later store to the same

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread
s A load from an address can't observe a later store to the same
= Program + input state = output state

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread
= A |load from an address can't observe a later store to the same
= Program + input state = output state

e Complicated if you have many threads

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread
= A |load from an address can't observe a later store to the same
= Program + input state = output state

e Complicated if you have many threads
= Any number of valid interleavings of threads

Q) SQUAREHEAD

CPU MEMORY MODEL

e Simple it you have one thread
= A load from an address can't observe a later store to the same
= Program + input state = output state
e Complicated if you have many threads
= Any number of valid interleavings of threads
= Program + input state = many possible output states

Q) SQUAREHEAD

WHAT HAS THE MEMORY MODEL EVER DONE
FOR ME?

Q) SQUAREHEAD

WHAT HAS THE MEMORY MODEL EVER DONE
FOR ME?

e C++ memory model
= Single threaded examples
= Multi threaded example
= Memory ordering

Q) SQUAREHEAD

WHAT HAS THE MEMORY MODEL EVER DONE
FOR ME?

e C++ memory model
= Single threaded examples
= Multi threaded example
= Memory ordering
e CPU memory model:
» Several variations, including x86 and RISC-V

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

OOOOOOOOOO

SINGLE THREADED EXAMPLE

int compute(const intx a, const intx b)
{

int result = *a;

result += 1;

result += xb;

return result;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

int result = *a;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

result += 1;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

result += xb;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

return result;

OOOOOOOOOO

SINGLE THREADED EXAMPLE

int compute(const intx a, const intx b)
{

int result = *a;

result += 1;

result += xb;

return result;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

int result = *a;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

result += 1;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

result += xb;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

return result;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

result += 1;
result += xb;

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

e Standard does not dictate how to implement C++!

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

e Standard does not dictate how to implement C++!

e Abstract machine

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

e Standard does not dictate how to implement C++!

e Abstract machine

e Only need to emulate observable behaviour

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

e Standard does not dictate how to implement C++!

e Abstract machine

e Only need to emulate observable behaviour

e Observable: I/0O, files, volatile, plus more implementation detined

Q) SQUAREHEAD

C++: "SEQUENCED BEFORE"

result += 1;
result += xb;

e Every value computation and side effect associated with a full-
expression is sequenced before every value computation and side
effect associated with the next full-expression to be evaluated.

e Standard does not dictate how to implement C++!

e Abstract machine

e Only need to emulate observable behaviour

e Observable: I/O, files, volatile, plus more implementation detined

e Can reorder

OOOOOOOOOO

SINGLE THREADED EXAMPLE

// original // reordered

load reg_0, *a load reg_0, *a

add reg_0, reg_0, 1 load reg_1, *b

load reg_1, *b add reg_0, reg_0, 1

add reg_0, reg_0, reg_1 add reg_0, reg_0, reg_1

ret reg_»0 ret reg_0

OOOOOOOOOO

SINGLE THREADED EXAMPLE

add reg_0, reg_0, 1 load reg_1, *b
load reg_1, *b add reg_0, reg_0, 1

OOOOOOOOOO

SINGLE THREADED EXAMPLE

add reg_0, reg_0, 1 load reg_1, *b
load reg_1, *b add reg_0, reg_0, 1

e Or CPU reorders it on the fly

OOOOOOOOOO

SINGLE THREADED EXAMPLE

add reg_0, reg_0, 1 load reg_1, *b
load reg_1, *b add reg_0, reg_0, 1

e Or CPU reorders it on the fly
e "All" modern CPUs are out-of-order

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

add reg_0, reg_0, 1 load reg_1, *b
load reg_1, *b add reg_0, reg_0, 1

e Or CPU reorders it on the fly
e "All" modern CPUs are out-of-order
e Can we swap the order of the loads too?

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE

add reg_0, reg_0, 1 load reg_1, *b
load reg_1, *b add reg_0, reg_0, 1

e Or CPU reorders it on the fly

e "All" modern CPUs are out-of-order

e Can we swap the order of the loads too?
e Yes, can't affect the observable behaviour

OOOOOOOOOO

SINGLE THREADED EXAMPLE (X86)
GCC 15.1 =03

int compute(const intx a, const intx b) compute(int constx, int constx):
{ mov edx, DWORD PTR [rdil
int result = xa; mov eax, DWORD PTR [rsil
result += 1; lea eax, [rdx+l+rax]
result += xb; ret

return result;

OOOOOOOOOO

SINGLE THREADED EXAMPLE (X86)

int compute(const intx a, const intx b)
{ mov edx, DWORD PTR [rdil
int result = xa; mov eax, DWORD PTR [rsil

result += 1;
result += xb;
return result;

OOOOOOOOOO

SINGLE THREADED EXAMPLE (X86)
GCC 15.1 =03

int compute(const intx a, const intx b)

{

int result = *a;

result += 1; lea
result += xb;

return result;

eax, [rdx+1l+rax]

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

void compute(intx a, intx b)
{
int result = get_value();
result++;
2;
result;

*a
*b
}

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

int result = get_value();

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

result++;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

a = 2;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

b = result;

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

void compute(intx a, intx b)
{
int result = get_value();
result++;
2;
result;

*a
*b
}

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

a = 2;

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

a = 2;

e Can we start the store to a earlier?

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

// original

move reg_0, get_value()
add reg_0, reg_0, 1
store *a, 2

store xb, reg_0

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

add reg_9, reg_0, 1
store *a, 2

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

add reg_0, reg_0, 1 store *a, 2
store *a, 2 add reg_0, reg_0, 1

OOOOOOOOOOO

SINGLE THREADED EXAMPLE 2

move reg_@, get_value()
add reg_0, reg_0, 1 store *a, 2
store *a, 2

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

add reg_0, reg_0, 1 store *a, 2
store *a, 2
store xb, reg_0

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

add reg_o,
store *a, 2

reg_0, 1

// reordered

move reg_0, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

add reg_o,
store *a, 2

reg_0, 1

// reordered

move reg_0, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

Or CPU reorders it

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

add reg_o,
store *a, 2

// reordered

move reg_@, get_value()
reg_0, 1 store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

Or CPU reorders it

CPU could reorder the stores!

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2

move reg_0, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

OOOOOOOOOOO

SINGLE THREADED EXAMPLE 2

move reg_@, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

e C++ to CPU: Do not store a before calling get_value!

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

move reg_@, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

e C++ to CPU: Do not store a before calling get_value!
e C++ to CPU: Do not reorder stores!

Q) SQUAREHEAD

SINGLE THREADED EXAMPLE 2

move reg_@, get_value()
store *xa, 2

add reg_0, reg_0, 1
store xb, reg_0

e C++ to CPU: Do not store a before calling get_value!
e C++ to CPU: Do not reorder stores!

e How do we express this to the CPU?

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)
GCC 15.1 =03

void compute(intx a, intx b) compute(intx, intsx):
{ push rbp
int result = get_value(); mov rbp, rdi
result++; push rox
a = 2; mov rbx, rsi
*b = result; sub rsp, 8
¥ call get_value()
mov DWORD PTR [rbp+0], 2
add eax, 1
mov DWORD PTR [rbx], eax
add rsp, 8
pop rox
pop rbp

ret

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)

GCC 15.1 =03

void compute(intx a, intx b)
{

int result = get_value();

result++;

a = 2;

b = result;
} call get_value()

mov DWORD PTR [rbp+0], 2

mov DWORD PTR [rbx], eax

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)

void compute(intx a, intx b)
{
int result = get_value();
result++;
a = 2;
b = result;
¥ call get_value()
mov DWORD PTR [rbp+0], 2
mov DWORD PTR [rbx], eax

e X86 never reorders stores

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)

void compute(intx a, intx b)
{
int result = get_value();
result++;
a = 2;
b = result;
I3 call get_value()
mov DWORD PTR [rbp+0], 2
mov DWORD PTR [rbx], eax

e X86 never reorders stores
e RISC-V can reorder stores

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)

void compute(intx a, intx b)
{
int result = get_value();
result++;
a = 2;
b = result;
I3 call get_value()
mov DWORD PTR [rbp+0], 2
mov DWORD PTR [rbx], eax

e X86 never reorders stores
e RISC-V can reorder stores to different addresses

OOOOOOOOOO

SINGLE THREADED EXAMPLE 2 (X86)

void compute(intx a, intx b)
{
int result = get_value();
result++;
a = 2;
b = result;
I3 call get_value()
mov DWORD PTR [rbp+0], 2
mov DWORD PTR [rbx], eax

e X86 never reorders stores
e RISC-V can reorder stores to different addresses
e Reorder includes eftects from pipeline, caches, store buffers etc

Q) SQUAREHEAD

MULTI THREADED EXAMPLE

Q) SQUAREHEAD

MULTI THREADED EXAMPLE

OOOOOOOOOO

MULTI THREADED EXAMPLE

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;

}

void consumer()

{
while(!ready){}
useDatal();

}

Q) SQUAREHEAD

MULTI THREADED EXAMPLE

Data data;
bool ready{false};

Q) SQUAREHEAD

MULTI THREADED EXAMPLE

void producer()

{
initializeData();
ready = true;

}

Q) SQUAREHEAD

MULTI THREADED EXAMPLE

void consumer()

{
while(!ready){}
useDatal();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;

}

void consumer()

{
while(!ready){}
useDatal();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data; producer():

bool ready{false}; sub rsp, 8
call initializeData()
void producer() mov BYTE PTR readylripl, 1
{ add rsp, 8
initializeData(); ret
ready = true; consumer():
¥ jmp useData()

void consumer()

{
while(!ready)<{}
useDatal();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};
call initializeData()
void producer() mov BYTE PTR readylripl, 1
{
initializeData();
ready = true;

}

void consumer()

{
while(!ready)<{}
useData();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()
{
initializeData();
ready = true;
1 jmp useData()

void consumer()

{
while(!ready)<{}
useDatal();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;
1 jmp useData()
void consumer()
{
while(!ready)<{}
useDatal();
}

e Informally:

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;
1 jmp useData()
void consumer()
{
while(!ready)<{}
useDatal();
}

e Informally: Always true

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;
1 jmp useData()
void consumer()
{
while(!ready)<{}
useDatal();
}

e Informally: Always true / always false (UB)

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;
1 jmp useData()
void consumer()
{
while(!ready)<{}
useDatal();
}

e Informally: Always true / always tfalse (UB) / data race (UB)

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
bool ready{false};

void producer()

{
initializeData();
ready = true;

} jmp useData()
void consumer()
{
while(!ready)<{}
useData():
¥

e Informally: Always true / always talse (UB) / data race (UB)
e Forward progress: Terminate, I/O, volatile, or sync/atomic

OOOOOOOOOO

MULTI THREADED EXAMPLE (NON UB)

Data data;
std::atomic<bool> ready{false};

void producer()

{
initializeData();
ready = true;

}

void consumer()

{
while(!ready)<{}
useData();

}

Q) SQUAREHEAD

MULTI THREADED EXAMPLE (NON UB)

std::atomic<bool> ready{false};

Q) SQUAREHEAD

TECHNOLOGY

MULTI THREADED EXAMPLE (NON UB X86)

Data data; producer():
std::atomic<bool> ready{false}; sub rsp, 8
call initializeData()

void producer() mov eax, 1
{ xchg al, BYTE PTR readyl[rip]

initializeData(); add rsp, 8

ready = true; ret
I3 consumer():

.L5:

void consumer() movzx eax, BYTE PTR readylrip]
{ test al, al

while(!ready){} je .L5

useDatal(); jmp useData()

OOOOOOOOOO

MULTI THREADED EXAMPLE (NON UB X86)

Data data;
std::atomic<bool> ready{false};

void producer() mov eax, 1

{ xchg al, BYTE PTR readyl[rip]
initializeData();
ready = true;

}

void consumer()

{
while(!ready){}
useDatal();

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (NON UB X86)

Data data;
std::atomic<bool> ready{false};

void producer()

{

initializeData();

ready = true;
s

.L5:

void consumer() movzx eax, BYTE PTR readylrip]
{ test al, al

while(!ready){} je .L5

useData():

}

OOOOOOOOOO

MULTI THREADED EXAMPLE (NON UB X86)

Data data;
std::atomic<bool> ready{false};

void producer()

{
initializeData();
ready = true;

}

void consumer()

{
while(!ready){}

useData(); jmp useData()

}

Q) SQUAREHEAD

s the data initialized?

s the cache up to date?

s there data race?

Microarchitectural details we don't know about?

Q) SQUAREHEAD

e |s the data initialized?

¢ |s the cache up to date?

e |s there data race?

e Microarchitectural details we don't know about?

Data data;
bool ready;
initializeData () ; while (!ready) {}

Q) SQUAREHEAD

DATA RACE

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

e The execution of a program contains a data race if it contains two
potentially concurrent conflicting actions,

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

e The execution of a program contains a data race if it contains two
potentially concurrent contlicting actions, at least one of which is
not atomic,

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

e The execution of a program contains a data race if it contains two
potentially concurrent contlicting actions, at least one of which is
not atomic, and neither happens before the other.

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

e The execution of a program contains a data race if it contains two
potentially concurrent contlicting actions, at least one of which is
not atomic, and neither happens before the other. Any such
data race results in undefined behavior.

Q) SQUAREHEAD

DATA RACE

e Two expression evaluations conflict if one of them modifies a
memory location and the other one reads or modifies the same
memory location (This is fine)

e The execution of a program contains a data race if it contains two
potentially concurrent contlicting actions, at least one of which is
not atomic, and neither happens before the other. Any such
data race results in undefined behavior.

e Does the data write happen before the read?

Q) SQUAREHEAD

Data data;
bool ready;

Does initializeData happen before useData?

Q) SQUAREHEAD

Data data;
bool ready;

Does initializeData happen before useData?

s there a happens-before relationship here?

Q) SQUAREHEAD

Data data;
bool ready;
))

useData () ;

Q) SQUAREHEAD

Data data;
bool ready;

useData () ;

Q) SQUAREHEAD

NON ATOMIC

initializeData () ; while (!ready) {}

useData () ;

Q) SQUAREHEAD

ATOMIC

Data data;
std::atomic<bool> ready;

initializeData () ; while (!ready) {}

useData () ;

Q) SQUAREHEAD

ATOMIC

Data data;
std::atomic<bool> ready;

initializeData () ; while (!ready) {}

useData () ;

Q) SQUAREHEAD

ATOMIC

Q) SQUAREHEAD

ATOMIC

e Atomics guarantee no half-written values

Q) SQUAREHEAD

ATOMIC

e Atomics guarantee no half-written values
e There is a total order to modifications of each individual atomic

Q) SQUAREHEAD

ATOMIC

e Atomics guarantee no half-written values
e There is a total order to modifications of each individual atomic
e Otherwise, it depends

Q) SQUAREHEAD

TECHNOLOGY

MEMORY ORDER

Data data;
std::atomic<bool> ready{false};

void producer()

{
initializeData();
ready = true;

}

void consumer()

{
while(!ready){}

useData():

Q) SQUAREHEAD

TECHNOLOGY

MEMORY ORDER

1 Data data;

2 std::atomic<bool> ready{false};

3

4 void producer()

5 1

6 initializeData();

7/ ready.store(true, std::memory_order_seq_cst);
8 }

9

10 void consumer()

11 {

12 while('ready.load(std::memory_order_seq_cst)){}
13 useDatal();

14 }

OOOOOOOOOO

MEMORY ORDER

ready.store(true, std::memory_order_seq_cst);

while('ready.load(std::memory order_seq_cst)){}

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations
= Stricter than necessary about reordering

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations
= Stricter than necessary about reordering

e Relaxed:

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations
= Stricter than necessary about reordering

e Relaxed:
= No happens-before across threads

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations
= Stricter than necessary about reordering

e Relaxed:
= No happens-before across threads
= One total modification order per atomic

Q) SQUAREHEAD

MEMORY ORDER

e Sequentially consistent:
= Establishes happens-before across threads
= Single total order for all seq_cst operations
= Stricter than necessary about reordering

e Relaxed:
= No happens-before across threads
= One total modification order per atomic

e Avoid half-written writes

Q) SQUAREHEAD

SEQUENTIALLY CONSISTENT

Data data;
std::atomic<bool> ready;

initializeDatal(); while (!ready.load(seq cst)) {}

ready.store (true, seq cst); useData () ;

Q) SQUAREHEAD

RELAXED

Data data;
std: :atomic<bool> ready;

initializeData () ; while (!ready.load(relaxed)) {}

ready.store (true, relaxed); useData () ;

Q) SQUAREHEAD

ACQUIRE / RELEASE

If an acquire-load observes the value of a release-store, the release-
store happens betfore the acquire-load

Q) SQUAREHEAD

RELEASE/ACQUIRE

Data data;
std: :atomic<bool> ready;

initializeData(); while (!ready.load (acquire)) {}

ready.store (true, release);

Q) SQUAREHEAD

RELEASE/ACQUIRE

Data data;
std: :atomic<bool> ready;

initializeData(); while (!ready.load (acquire)) {}

ready.store (true, release);

e Store happens-before load

Q) SQUAREHEAD

RELEASE/ACQUIRE

Data data;
std: :atomic<bool> ready;

initializeData(); while (!ready.load (acquire)) {}

ready.store (true, release);

e Store happens-before load
e Can't reorder memory ops after the release-store

Q) SQUAREHEAD

RELEASE/ACQUIRE

Data data;
std: :atomic<bool> ready;

initializeData(); while (!ready.load (acquire)) {}

ready.store (true, release);

e Store happens-before load
e Can't reorder memory ops after the release-store
e Can't reorder memory ops before the acquire-load

Q) SQUAREHEAD

RELEASE/ACQUIRE

Data data;
std: :atomic<bool> ready;

initializeData(); while (!ready.load (acquire)) {}

ready.store (true, release);

e Store happens-before load

e Can't reorder memory ops after the release-store

e Can't reorder memory ops before the acquire-load
e But opposite is ok

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86)

Data data;
std::atomic<bool> ready{false};

void producer()
{
initializeData();
ready.store(true, std::memory_order_releas

}

void consumer()

{
while(!ready.load(std: :memory_order_acquir
useDatal();

}

Q) SQUARE

HEAD

TECHNOLOGY

MULTI THREADED EXAMPLE (X86)

Data data; 1
std::atomic<bool> ready{false}; 2
3

void producer() 4
{ 5
initializeData(); 6
ready.store(true, std::memory_order_releas 7

s 8
9

void consumer() 10
{ 11
while(!ready.load(std: :memory_order_acquir 12

useData():

producer():

sub rsp, 8

call initializeData()

mov BYTE PTR readylrip], 1
add rsp, 8

ret

consumer():
.L5:

movzx eax, BYTE PTR readylrig
test al, al

je .L5

jmp useData()

Q) SQUAREHEAD

TECHNOLOGY

MULTI THREADED EXAMPLE (X86)

Data data;
std::atomic<bool> ready{false};

void producer() mov BYTE PTR readylripl, 1
{

initializeData();
ready.store(true, std::memory_order_releas

s
movzx eax, BYTE PTR readylrig

void consumer()

{

while(!ready.load(std: :memory_order_acquir
useDatal();

OOOOOOOOOO

Also, memory_order::

e acg_rel (read-modify-write ops)
e consume (don't use)

Q) SQUAREHEAD

How does the compiler know what is safe and not?

Q) SQUAREHEAD

CPU MEMORY MODEL

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

e Forwarding networks?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

e Forwarding networks?

e Store buffers?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

e Forwarding networks?

e Store buffers?

e Store/load coalescing?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

e Forwarding networks?

e Store buffers?

e Store/load coalescing?

e Memory system?

Q) SQUAREHEAD

WHAT DO WE MEAN BY (RE)ORDERING?

e Out of order instruction execution?
e Out of order micro-op execution?
e Pipeline?

e Forwarding networks?

e Store buffers?

e Store/load coalescing?

e Memory system?

e Caches?

Q) SQUAREHEAD

MEMORY (CONSISTENCY) MODEL

Q) SQUAREHEAD

MEMORY (CONSISTENCY) MODEL

e Different way of thinking than C++ memory model!

Q) SQUAREHEAD

MEMORY (CONSISTENCY) MODEL

e Different way of thinking than C++ memory model!
e Imagine a single global order of all memory operations

Q) SQUAREHEAD

MEMORY (CONSISTENCY) MODEL

e Different way of thinking than C++ memory model!
e Imagine a single global order of all memory operations
e What are the allowed orders

Q) SQUAREHEAD

MEMORY (CONSISTENCY) MODEL

e Different way of thinking than C++ memory model!
e Imagine a single global order of all memory operations
e What are the allowed orders

swry

MEMORY

Sarin, Hill, Wood: A Primer on Memory Consistency and Cache Coherence

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread

mov reg_0 42
store xdata reg_0
mov reg_1 1

store xready reg_1

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread

mov reg_0 42 -walt

store *data reg_©0 load reg_0 xready
mov reg_1 1 jz reg_0 .wait
store *ready reg_1 load reg_1 xdata

(use reg_1)

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread
store *data reg_©0 load reg_0 xready

store xready reg_1 load reg_1 *data

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread
store *data reg_©0 load reg_0 xready

store xready reg_1 load reg_1 *data

What is a valid order here?

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread
store *data reg_©0 load reg_0 xready

store xready reg_1 load reg_1 *data

What is a valid order here?

e |In the (imaginary) global, total memory order,

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread
store *data reg_©0 load reg_0 xready

store xready reg_1 load reg_1 *data

What is a valid order here?

e |In the (imaginary) global, total memory order,
e imagine each thread takes turns (as-if rule).

Q) SQUAREHEAD

PROGRAM ORDER

Producer thread Consumer thread
store *data reg_©0 load reg_0 xready

store xready reg_1 load reg_1 *data

What is a valid order here?

e |In the (imaginary) global, total memory order,
e imagine each thread takes turns (as-if rule).
e How much of program order is preserved?

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread

store xdata reg_0 store *data reg_0 load reg_0 *ready

store *xready reg_1 store xready reg_1 load reg_1 *data
load reg_0 *ready

load reg_1 *data

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 store *data reg_0 load reg_0 *ready
store xready reg_1 load reg_0 xready load reg_1 *data

load reg_0 *ready

store *ready reg_1

load reg_0 *ready

load reg_1 *xdata

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 load reg_0 *xready load reg_0 xready
store xready reg_1 load reg_0 xready load reg_1 *data

store xready reg_1

load reg_0 *ready

load reg_1 *data

store *xdata reg_0

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 store *xdata reg_©0 load reg_0 *ready
store xready reg_1 load reg_0 *ready load reg_1 *data

load reg_0 xready

store *ready reg_1

load reg_0 *ready

load reg_1 *data

e Sequential consistency

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 store *xdata reg_©0 load reg_0 *ready
store xready reg_1 load reg_0 *ready load reg_1 *data

load reg_0 xready

store *ready reg_1

load reg_0 *ready

load reg_1 *data

e Sequential consistency
e All of program order is preserved

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 store *xdata reg_©0 load reg_0 *ready
store xready reg_1 load reg_0 *ready load reg_1 *data

load reg_0 xready

store *ready reg_1

load reg_0 *ready

load reg_1 *data

e Sequential consistency
e All of program order is preserved
e Easy to reason about

Q) SQUAREHEAD

MEMORY ORDER

Producer thread Memory order Consumer thread
store *data reg_0 store *xdata reg_©0 load reg_0 *ready
store xready reg_1 load reg_0 *ready load reg_1 *data

load reg_0 xready

store *ready reg_1

load reg_0 *ready

load reg_1 *data

e Sequential consistency

e All of program order is preserved

e Easy to reason about

* |ess possibilities for optimization ("no-one" does this)

Q) SQUAREHEAD

SEQUENTIAL CONSISTENCY

Preserves

e |load — Load
e Store — Store
e | oad — Store
e Store — Load

Q) SQUAREHEAD

TOTAL STORE ORDERING (TSO) (~X86)

Preserves

e | oad — Load
e Store — Store
e | oad — Store

¢ Store——toad

Q) SQUAREHEAD

TOTAL STORE ORDERING (TSO) (~X86)

e Motivated by store buffers

Q) SQUAREHEAD

TOTAL STORE ORDERING (TSO) (~X86)

e Motivated by store buffers
e Stores are buffered on the core into a store buffer

Q) SQUAREHEAD

TOTAL STORE ORDERING (TSO) (~X86)

e Motivated by store buffers

e Stores are buffered on the core into a store buffer

e A later load might take its value before the buffer is drained to
cache

Q) SQUAREHEAD

TSO EXAMPLE

Thread 1 Thread 2
store x 1 storey 1

load vy load x

Q) SQUAREHEAD

TSO EXAMPLE

Thread 1 Thread 2
store x 1 storey 1

load vy load x
Can X and y be 07

Q) SQUAREHEAD

TSO EXAMPLE

Thread 1 Memory order Thread 2

store x 1 load vy store y 1

load y store y 1 load X
load X

store x 1

Q) SQUAREHEAD

TSO EXAMPLE

Thread 1 Memory order Thread 2
store x 1 load vy store y 1
load y store y 1 load X
load X
store x 1
X == 0, y ==

Fine on TSO, not on SCI

Q) SQUAREHEAD

CLARIFICATION

Thread 1
store x 1

load x

OOOOOOOOOO

CLARIFICATION

Thread 1
store x 1

load x

Can store x be ordered after Load x?

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Q) SQUAREHEAD

CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

e Memory order: The order that memory operations go to a
hypothetical serialized memory

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

e Memory order: The order that memory operations go to a
hypothetical serialized memory
e Value of a load follows program order, otherwise memory order

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

e Memory order: The order that memory operations go to a
hypothetical serialized memory

e Value of a load follows program order, otherwise memory order

e Load x picks 1 from the core's store buffer

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

e Memory order: The order that memory operations go to a
hypothetical serialized memory

e Value of a load follows program order, otherwise memory order

e Load x picks 1 from the core's store buffer

e Load X never even goes to cache

Q) SQUAREHEAD
CLARIFICATION

Thread 1 Memory order
store x 1 load x

load X store x 1

Yes! But.

e Memory order: The order that memory operations go to a
hypothetical serialized memory

e Value of a load follows program order, otherwise memory order

e Load x picks 1 from the core's store buffer

e Load X never even goes to cache

e Just a model

Q) SQUARE

HEAD

TECHNOLOGY

MULTI THREADED EXAMPLE (X86/TSO)

Data data; 1
std::atomic<bool> ready{false}; 2
3

void producer() 4
{ 5
initializeData(); 6
ready.store(true, std::memory_order_releas 7

s 8
9

void consumer() 10
{ 11
while(!ready.load(std: :memory_order_acquir 12

useData():

producer():

sub rsp, 8

call initializeData()

mov BYTE PTR readylrip], 1
add rsp, 8

ret

consumer():
.L5:

movzx eax, BYTE PTR readylrig
test al, al

je .L5

jmp useData()

OOOOOOOOOO

MULTI THREADED EXAMPLE (X86/TSO)

Data data;
std::atomic<bool> ready{false};

void producer() mov BYTE PTR readylripl, 1
{

initializeData();
ready.store(true, std::memory_order_releas

}

movzx eax, BYTE PTR readylrig
void consumer()
{
while(!ready.load(std: :memory_order_acquir
useDatal();

}

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order ot all stores

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads and all
loads before stores?

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads and all
loads before stores?
e What if want non-FIFO store buffers?

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads and all
loads before stores?

e What if want non-FIFO store buffers?

e What if we want coalescing of stores/loads?

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads and all
loads before stores?

e What it want non-FIFO store buffers?

e What if we want coalescing of stores/loads?

e What if we want fancy speculation and prediction?

Q) SQUAREHEAD

RELAXED MEMORY MODELS (ARM, RISC-V)

e Do we really need to keep order of all stores and all loads and all
loads before stores?

e What if want non-FIFO store buffers?

e What if we want coalescing of stores/loads?

e What if we want fancy speculation and prediction?

e What if we want other optimizations in the memory system /
cache?

Q) SQUAREHEAD

RELAXED MEMORY MODELS

Producer thread Consumer thread

store *xdata@ reg_ 0 load reg_0 xready

store xdatal reg_1 load reg_1 *data®

store *xready reg_2 load reg_2 xdatal

Q) SQUAREHEAD

RELAXED MEMORY MODELS

Producer thread Memory order Consumer thread

store *xdata@ reg_@ store xdatal reg_1l Lload reg_0 *ready

store *xdatal reg_1 store xdata® reg_@0 1load reg_1 *data®

store *xready reg_2 store xready reg_2 load reg_2 *datal
load reg_0 *ready

load reg_2 *datal

load reg_1 *xdata®

Q) SQUAREHEAD

RELAXED MEMORY MODELS

e As a programmer (with an interest in performance), | want to

Q) SQUAREHEAD

RELAXED MEMORY MODELS

e As a programmer (with an interest in performance), | want to
= Give the architecture a lot of freedom to optimize

Q) SQUAREHEAD

RELAXED MEMORY MODELS

e As a programmer (with an interest in performance), | want to
= Give the architecture a lot of freedom to optimize
= Tell it which memory operations | care about

Q) SQUAREHEAD

RELAXED MEMORY MODELS

e As a programmer (with an interest in performance), | want to
= Give the architecture a lot of freedom to optimize
= Tell it which memory operations | care about
= At |least a few safe defaults

Q) SQUAREHEAD

RELAXED MEMORY MODELS

e As a programmer (with an interest in performance), | want to
= Give the architecture a lot of freedom to optimize
= Tell it which memory operations | care about
= At |least a few safe defaults
= A memory model to reason about

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V
SAFE DEFAULTS: SAME ADDRESS STORE — STORE

Producer thread Memory order?

store xdata® reg_0 store *xdata® reg_1l

store xdata@® reg_1 store *data@ reg_0

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V
SAFE DEFAULTS: DATA DEPENDENCY

Producer thread Memory order?
load reg_0 *data@ store *xdatal reg_0
store xdatal reg_@ load reg_0 *data®

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V
SAFE DEFAULTS: ADDRESS DEPENDENCY

Producer thread Memory order?
load reg_0 pointer store *reg_0 2

store *reg_0 2 load reg_0 pointer

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V
FENCES

Producer thread Memory order Consumer thread

store *xdata@ reg_@ store xdatal reg_1 Lload reg_0 *ready

store *xdatal reg_1 store xdata® reg_@® 1load reg_1 *data@

store xready reg_2 store *ready reg_2 load reg_2 *datal
load reg_0 *ready

load reg_2 *datal

load reg_1 xdata®

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V
FENCES

Producer thread Memory order Consumer thread
store *xdata@ reg_@ store xdatal reg_1 Lload reg_0 *ready
store *xdatal reg_1 store xdata® reg_@ fence r, r

fence w, w store xready reg_2 load reg_1 *data®
store xready reg_2 load reg_0 *ready load reg_2 xdatal

load reg_2 *datal

load reg_1 xdata®

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering
e Except 13 specific rules, e.g.

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering
e Except 13 specific rules, e.g.
= Don't reorder past a store to overlapping address

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering
e Except 13 specific rules, e.g.
= Don't reorder past a store to overlapping address
» Don't reorder across data/control/address dependency

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering

e Except 13 specific rules, e.g.

= Don't reorder past a store to overlapping address

» Don't reorder across data/control/address dependency

= Don't reorder across fences (depending on type of tence)

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering
e Except 13 specific rules, e.g.

Don't reoro
Don't reord
Don't reord

Don't reorg

er past a store to overlapping address

er across data/control/address dependency

er across fences (depending on type of tence)
er across AMOs with acquire/release semantics

Q) SQUAREHEAD

RELAXED MEMORY MODELS: RISC-V

e RISC-V allows all sorts of reordering

e Except 13 specific rules, e.g.

= Don't reorder past a store to overlapping address

» Don't reorder across data/control/address dependency

= Don't reorder across fences (depending on type of tence)

= Don't reorder across AMOs with acquire/release semantics

= And more, see "Preserved Program Order" in RISC-V ISA
manual

Q) SQUAREHEAD

Language memory model

!

Q) SQUAREHEAD

Language memory model

!

Architecture memory model

!

Q) SQUAREHEAD

Language memory model

!

Architecture memory model

!

Microarchitecture (pipeline, store buffers)

Q) SQUAREHEAD

Language memory model

!

Architecture memory model

!

Microarchitecture (pipeline, store buffers) and cache coherence

Q) SQUAREHEAD

REMEMBER

Q) SQUAREHEAD

C++ MEMORY MODEL

Data data;
std::atomic<bool> ready;

initializeData () ; while (!ready) {}

Q) SQUAREHEAD

CPU MEMORY MODEL

S

i \ /-_-h
&) (@) e (o

i i
@

MEMORY

N

Q) SQUAREHEAD

CPU MEMORY MODEL

)

MEMORY

Producer thread Memory order Consumer thread

store xdata reg_0 store *data reg_0 load reg_0 xready

store *xready reg_1 store xready reg_1 load reg_1 *data
load reg_0 *ready

load reg_1 *data

Q) SQUAREHEAD

BONUS!
DON'T TRUST THE ASSEMBLY

Q) SQUAREHEAD

THE TWO MEMORY MODELS

ANDERS SCHAU KNATTEN
C++ UNDER THE SEA 2025
Squarehead / CppQuiz.org

